Sinusoidal Oscillator Test

(Closed-book, no notes, real calculator no smartphones, 50 min)

Name: _______________________

Score:______/50

Question 1 Determine the frequency of oscillation in Hz for the circuit shown. The amplifiers have $R_i \to \infty$ and $R_o = 0$. Neglect loading effects of the two diodes, and you can assume the magnitude of the loop gain is sufficient to sustain oscillations. Show your work for full credit.

(15 points)

Solution For oscillation, the phase shift around the feedback loop must be 360°. The amplifier with gain -10 supplies 180°, so that each of the RC sections must supply a 60° phase shift. The frequency response and phase of a section are

$$T(j\omega) = \frac{1}{1 + j\omega RC}, \quad \phi = -\tan^{-1} \omega RC$$

Where $R = R_1 = R_2 = R_3$, and $C = C_1 = C_2 = C_3$. Thus

$$60^\circ = \tan^{-1} \omega RC \Rightarrow \omega RC = \sqrt{3} \Rightarrow \omega = \frac{\sqrt{3}}{RC} = 17.32 \times 10^3 \text{ rad/s}$$

Consequently $f_0 = 2.76$ kHz. Note: a SPICE simulation gives $f_0 = 2.98$ kHz. The difference between the calculated and SPICE values can be explained by the loading effect for the diodes. If we insert a buffer amplifier between the diodes and the last RC stage, SPICE gives a frequency that matches our calculations.
Question 2 The analysis of a negative feedback oscillator shows that the loop gain transfer function is given by

\[T(s) = \frac{A}{s^3 + as^2 + bs + 1} \]

where \(a\) and \(b\) are determined by the circuit components and \(A\) is the dc gain. Determine expressions in terms of \(a\), \(b\), and \(A\) for the oscillation frequency \(\omega_0\) (rad/s) and the minimum \(A\) required for sustained oscillation. (10 points)

Solution Set \(s = j\omega\) and \(T(j\omega) = -1\). Then

\[\frac{A}{-j\omega^3 - a\omega^2 + jb\omega + 1} = -1 \]

\[\frac{A}{(1 - a\omega^2) + j(b\omega - \omega^3)} = -1 \quad \cdots (1) \]

The RHS is real so the LHS should have no imaginary part, so that

\[\omega^3 = b\omega \Rightarrow \omega = \sqrt[3]{b} \]

Substitute this in (1) to find

\[\frac{A}{1 - ab} = -1 \Rightarrow A = ab - 1 \]
Question 3 For the oscillator shown, determine the amplitude and frequency (in Hz) of the output at v_o. Explain briefly the function and purpose of the SPICE statement

```
.IC V(Vo) = 1u.
```

You can assume that very little current flows through the diodes. Consequently, they will not have the normal 0.7 V across them when conducting. Rather, use $V_r = 0.35$ V. (15 points)

Solution

The frequency of oscillation is $f_0 = \frac{1}{2\pi RC}$ where $R = 4.7K$ and $C = 1$ nF. Substituting values give $f_0 = 33.9$ kHz. The purpose of the SPICE statement `.IC V(Vo) = 1u` is to set the voltage at node V_o to 1μV. In oscillator circuits, where there is no input source, one has to provide an initial signal that is then fed back, amplified, etc. In this particular circuit, this statement is not needed, but it is good practice to always include this for oscillators.

Assume the amplitude has stabilized at v_{om}, and consider the instant when v_o is at the crest of the sinewave. Since the current through the diodes is negligible (see problem statement), the voltage at the junction of R_3 and R_2 is $v_{om}/2$. The voltage at the inverting input of the amplifier is $v_{om}/2 - 0.35$. For a Wien bridge this voltage is one third of the output voltage, so that

$$\frac{v_{om}}{2} - 0.35 = \frac{v_{om}}{3}$$

Solving yields $v_{om} = 2.1$ V
Question 4 Draw the small-signal model for the LC oscillator shown. For the BJT, include g_m, r_o, $r_π$, $c_π$, and $c_μ$. You should also indicate $v_π$ along with its proper polarity. Label the collector, base, and emitter.

Next, briefly explain how you would go about determining the minimum g_m required for oscillation. Do not find the condition, just explain a procedure. For example, you can start with something such as “Write a KVL equation around loop xxx and then solve for yyy. Next, set $s = j\omega$, and …”. You should not need more than 3–4 sentences. *(10 points)*